Sedenion
Šablon:Nedostaju izvori U apstraktnoj algebri, sedenioni formiraju 16-dimenzionalnu neasocijativnu algebru preko realnih brojeva dobiveno primjenjivanjem Cayley-Dickson konstrukcije na oktonione. Skup sedeniona se označava kao .
Izraz "sedenion" je također korišten za ostale 16-dimenzionalne algebarske strukture kao tenzor proizvod dva primjerka kvaterniona, ili kao algebra od 4 sa 4 matrice preko realnih brojeva.
Cayley–Dickson Sedenioni
Aritmetika
Množenje Cayley-Dickson sedeniona nije ni komutativno ni asocijativno, isto kao što je i slučaj kod (Cayley–Dickson) oktoniona. Za razliku od oktoniona, sedenioni čak nemaju ni svojstvo da su alternativni. Međutim, oni imaju svojstvo moćne asocijativnosti koja se može navesti kao svaki elemenat x iz gdje je eksponent dobro definiran.
Svaki sedenion je realna linearna kombinacija jedinica sedeniona 1, e1, e2, e3, e4, e5, e6, e7, e8, e9, e10, e11, e12, e13, e14 i e15, koji formiraju osnovni vektor prostor sedeniona.
Sedenioni imaju multiplikativni neutralni element 1 i multiplikativne inverzije, ali oni nisu algebra podjele. Ovo je zato što oni imaju nulni dijelitelj, što znači da se dva broja koja nisu nula mogu pomnožiti da se dobije nula kao rezultat. Jednostavan primjer ovoga je (e3 + e10)×(e6 − e15).
Tablica množenja ovih jediničnih sedeniona je sljedeća:
| × | 1 | e1 | e2 | e3 | e4 | e5 | e6 | e7 | e8 | e9 | e10 | e11 | e12 | e13 | e14 | e15 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 1 | e1 | e2 | e3 | e4 | e5 | e6 | e7 | e8 | e9 | e10 | e11 | e12 | e13 | e14 | e15 |
| e1 | e1 | −1 | e3 | −e2 | e5 | −e4 | −e7 | e6 | e9 | −e8 | −e11 | e10 | −e13 | e12 | e15 | −e14 |
| e2 | e2 | −e3 | −1 | e1 | e6 | e7 | −e4 | −e5 | e10 | e11 | −e8 | −e9 | −e14 | −e15 | e12 | e13 |
| e3 | e3 | e2 | −e1 | −1 | e7 | −e6 | e5 | −e4 | e11 | −e10 | e9 | −e8 | −e15 | e14 | −e13 | e12 |
| e4 | e4 | −e5 | −e6 | −e7 | −1 | e1 | e2 | e3 | e12 | e13 | e14 | e15 | −e8 | −e9 | −e10 | −e11 |
| e5 | e5 | e4 | −e7 | e6 | −e1 | −1 | −e3 | e2 | e13 | −e12 | e15 | −e14 | e9 | −e8 | e11 | −e10 |
| e6 | e6 | e7 | e4 | −e5 | −e2 | e3 | −1 | −e1 | e14 | −e15 | −e12 | e13 | e10 | −e11 | −e8 | e9 |
| e7 | e7 | −e6 | e5 | e4 | −e3 | −e2 | e1 | −1 | e15 | e14 | −e13 | −e12 | e11 | e10 | −e9 | −e8 |
| e8 | e8 | −e9 | −e10 | −e11 | −e12 | −e13 | −e14 | −e15 | −1 | e1 | e2 | e3 | e4 | e5 | e6 | e7 |
| e9 | e9 | e8 | −e11 | e10 | −e13 | e12 | e15 | −e14 | −e1 | −1 | −e3 | e2 | −e5 | e4 | e7 | −e6 |
| e10 | e10 | e11 | e8 | −e9 | −e14 | −e15 | e12 | e13 | −e2 | e3 | −1 | −e1 | −e6 | −e7 | e4 | e5 |
| e11 | e11 | −e10 | e9 | e8 | −e15 | e14 | −e13 | e12 | −e3 | −e2 | e1 | −1 | −e7 | e6 | −e5 | e4 |
| e12 | e12 | e13 | e14 | e15 | e8 | −e9 | −e10 | −e11 | −e4 | e5 | e6 | e7 | −1 | −e1 | −e2 | −e3 |
| e13 | e13 | −e12 | e15 | −e14 | e9 | e8 | e11 | −e10 | −e5 | −e4 | e7 | −e6 | e1 | −1 | e3 | −e2 |
| e14 | e14 | −e15 | −e12 | e13 | e10 | −e11 | e8 | e9 | −e6 | −e7 | −e4 | e5 | e2 | −e3 | −1 | e1 |
| e15 | e15 | e14 | −e13 | −e12 | e11 | e10 | −e9 | e8 | −e7 | e6 | −e5 | −e4 | e3 | e2 | −e1 | −1 |
Također pogledajte
Reference
- Šablon:En simbol Šablon:Citation
- Šablon:En simbol Kinyon, M.K., Phillips, J.D., Vojtěchovský, P.: C-loops: Extensions and constructions, Journal of Algebra and its Applications 6 (2007), no. 1, 1–20. [1]
- Šablon:En simbol Kivunge, Benard M. and Smith, Jonathan D. H: "Subloops of sedenions Šablon:Webarchive", Comment.Math.Univ.Carolinae 45,2 (2004)295–302.
- Šablon:En simbol Šablon:Citation
- Šablon:En simbol Šablon:Citation