Ova datoteka je sa Wikimedia Commons i može se koristiti i na drugim projektima.
Opis sa njene stranice opisa datoteke je prikazan ispod.
Sažetak
OpisStationaryStatesAnimation.gif
English: Three wavefunction solutions to the Time-Dependent Schrödinger equation for a harmonic oscillator. Left: The real part (blue) and imaginary part (red) of the wavefunction. Right: The probability of finding the particle at a certain position. The top two rows are the lowest two energy eigenstates, and the bottom is the superposition state , which is not an energy eigenstate. The right column illustrates why energy eigenstates are also called "stationary states".
Thus in every quantum stae,there are certain preferred positions of maximum probability
Osoba koja je učestvovala u radu na ovom dokumentu posvetila je rad javnoj domeni odricanjem od svih svojih prava na taj rad širom svijeta po zakonu o autorskim pravima i svim povezanim zakonskim pravima koja bi imao/imala, u mjeri dopuštenoj zakonom. Možete kopirati, mijenjati, distribuirati i prilagođavati rad, čak i u komercijalne svrhe, bez traženja dopuštenja.
http://creativecommons.org/publicdomain/zero/1.0/deed.enCC0Creative Commons Zero, Public Domain Dedicationfalsefalse
Captions
Add a one-line explanation of what this file represents
{{Information |Description ={{en|1=Three wavefunction solutions to the Time-Dependent Schrödinger equation for a harmonic oscillator. Left: The real part (blue) and imaginary part (red) of the wavefunction. Right: The probability of finding the partic