Kapsida

Izvor: testwiki
Datum izmjene: 9 septembar 2024 u 02:39; autor: imported>Vít Karásek (link fix)
(razl) ← Starija izmjena | Trenutna verzija (razl) | Novija izmjena → (razl)
Idi na navigaciju Idi na pretragu
Prikaz citomegalovirusa

Kapsida – (rijetko kapsid) – je proteinski omotač virusa. Građen je od nekoliko oligomernih strukturnih podjedinica proteina, zvanih protomere. Uočljive 3-dimenzijske morfološke podjedinice, koje mogu ili ne mogu odgovarati pojedinačnim proteinima, zovu se kapsomere. Kapsida zatvara genetički materijal virusa.[1][2]

Kapside se svrstavaju prema njihovoj strukturi. Većina ih ima kapside sa ili spiralne ili heliksnom strukturom.[3][4] Neki virusi, kao što su bakteriofagi, imaju mnogo kompliciraniju strukturu, zbog ograničenja elastičnosti i elektrostatike.[5] Ikosaedarni oblik, koji ima 20 ekvilateralnih trougaonih strana, približno je sferan, dok je heliksni oblik cilindričan. Strane kapsida se mogu sastojati od jednog ili više proteina. Naprimjer, kapsoidni virus bolesti slinavke i šapa ima strane koje se sastoje od tri proteina: VP1–3.[6][7]

Neki virusi imaju ovojnicu, što znači da je kapsida obložena lipidnom membranom poznatom kao virusni omotač. Omotač odgovara proteinskom omotaču unutarćelijske membrane kod domaćina virusa; primjeri uključuju unutrašnju ćelijski membranu, Golgijevu membranu i vanjsku ćelijsku membranu.[8]

Kada jednom virus zarazi ćeliju i počne se replicirati, nove kapsulirane podjedinice se sintetiziraju prema genetičkoj informaciji virusa, korištenjem mehanizama bakterijske biosinteze proteina. Tokom procesa montaže, ulazna podjedinica je sastavljena u jednom tjemenu proteinskog omotača. Kroz ovaj ulaz, transportira se virusna DNK ili RNK u proteinski omotač – kapsidu.[9]

Za kategorizaciju virusa u porodice, koriste se strukturne analize arhitekture glavnih kapsidnih proteina (MCP). Naprimjer, bakteriofag PRD1, virus Paramecium bursaria i alge Chlorella te sisarski adenovirusi se nalaze u istoj porodici.[10]

Specifični oblici

Ikosahedarski

Ikosahedralna kapsida jednog adenovirusa

Iako je ikosahedarska struktura vrlo česta među virusima, postoje razlike u njenoj veličini i male varijacije između viriona. S obzirom na asimetričane podjedinice na trouglastom licu ikosaedara, po tri podjedinice po svakom licu 60 podjedinica, mogu biti postavljeni na ekvivalentan način. Većina virusa, zbog svoje veličine, imaju više od 60 podjedinica. Te varijacije su klasificirana na temelju načela kvazi-ekvivalencije, koju su predložili Donald Caspar i Aaron Klug.[11] Smatra se da je ikosahedarska struktura konstruirana od 12 pentametra. Broj monomera je fiksan, a broj heksamera može varirati.[12] Ove ljuske mogu biti izgrađene od pentametra i heksamera, smanjenjem broja T (triangulacija) na neekvivalentnim lokacijama podjedinica, T-brojem kojim se donose određene cjelobrojne vrijednosti 1, 3, 4, 7, 12, 13,...(T = h2 + k2 + hk, sa h, k = ne-negativni cijeli brojevi). Ljuske uvijek sadrže 12 pentamera plus 10 (T-1) heksamera. Ova klasifikacija se također može primijeniti i na glavninu poznatih virusa, uz izuzuzetke koji uključuju rotaviruse, kod kojih tačkaste mutacije remete simetriju.[12]

Izduženi

Ove kapside su ikosaedarski izdužene, duž petostruke osi i uobičajenog aranžmana glave bakteriofaga. Takva struktura sastoji se od cilindra s kapom na oba kraja. Cilindar se sastoji od 10 trouglova. Broj Q, koji može biti bilo koji pozitivni cijeli broj, određuje broj trouglova, sastavljenih od asimetričnih podjedinica, koje čine 10 trouglova cilindra. Kape su klasificirane po broju T.[13]

Spiralni – Helikoidni

3D model helikoidne kapsidne strukture virusa

Mnogi štapičasti i nitasti (filamentni) biljni virusi imaju kapside sa uvojitom simetrijom.[14] Ovakve strukture se mogu opisati kao set n 1-D molekulskih navoja koji su povezani jenom n-osnom simetrijom.[15] Heliksna transformacija je klasificirana u dvije kategorije: jednodimenzijske i dvodimenzijske heliksne sisteme.[15] Stvaranje cijelih spiralni struktura oslanja se na skup translacijskih i rotacijskih matrica koje su kodirane u banci podataka za bjelančevine. Spiralna simetrija je data formulom:

P = μ x ρ,

μ = broj strukturnih jedinica po prijelazu iz spirale,
ρ = aksijalni uspon po jedinici, a
P = uspon spirale.
Za srukturu se kaže da je otvorena, s obzirom na obilježje da bilo koji volumen može da se zatvori promjenom dužine spirale.[16] Najupoznatiji spiralni virus mozaika duhana,[14] koji je jednostruki molekulski (+) lanac RNK. Svaki sloj proteina u unutrašnjosti zavojnice veže tri nukleotida RNK genoma. Virus gripe A razlikuje se po tome što se sastoji od više ribonukloproteina, virusnih NP proteina organiziranih u RNK spiralnu strukturu. Veličina je također drugačija, jer virus mozaika duhana ima 16,33 proteinskih podjedinica po spirali.

Broj triangulacija

T-brojevi virusne kapside

Ikosahedarskim virusnim kapsidama obično se dodjeljuje tbroj triangulacija (T-broj), kako bi se opisao odnos između broja pentagona (petougla) i heksagona (šestougla), tj. njihove kvazi-simetrije u kapsidnoj ljuski. Ideja T-broja je izvorno razvijena za objašnjenje kvazisimetrije po pomenutim Casparu i Klugu u 1962.[17]

Naprimjer, čisti dodekahedarski virus ima T-broj 1 (obično pisano T=1) i skraćeni ikosahedarski označen kao T=3. T-broj se proračunava:

  • (1) primjenom rešetke na površini virusa sa koordinatama h i K,
  • (2) računajući broj koraka između uzastopnih pentagona na površini virusa,
  • (3) primjenom formule
T=h2+hk+k2 = (h+k)2hk

gdje hk, h i k = distance između sukcesivnih pentagona na virusnoj površini za svaku os (vidi sliku). Veći T-broj više heksagona je prikazan u odnosu na pentagone.[18][19]

Za šestougaoni sistem, polispirala ima 20T tjemena, 30T rubova, 10T+2 lica (12 petouglov i 10(T-1) šestouglova). Za dvojno trouglasti sistem, broj tjemena i lica računa se obrnuto.

Prikaz T-brojeva virusnih kapsida do (6,6)
Pokazatelji kapsida Šestougaoni/Petougaoni sistem Trouglasti sistem
(h,k) T Broj šestouglova Conwaysko poliedarsko obilježavanje Slika Geometrijsko ime Broj trouglova Conwaysko poliedarsko obilježavanje Slika Geometrijsko ime
(1,0) 1 0 D Dodekahedron Dodekahedron 20 I Ikosahedron Ikosahedron
(1,1) 3 20 tI
dkD
Skraćeni ikosahedron Skraćeni ikosahedron 60 kD Pentakis dodekahedron Pentakis dodekahedron
(2,0) 4 30 cD=t5daD Skraćeni rombni triakontahedron Skraćeni rombni triakontahedron 80 k5aD Pentakis ikosidodekahedron Pentakis ikosidodekahedron
(2,1) 7 60 dk5sD Skraćeni pentagonski heksekontahedron 140 k5sD Pentakis pljosnati dodekahedron
(3,0) 9 80 dktI Heksapenta skraćeni pentakis dodekahedron 180 ktI Heksapentakis skraćeni ikosahedron
(2,2) 12 110 dkt5daD 240 kt5daD Heksapentakis skraćeni rombni triakontahedron
(3,1) 13 120 260
(4,0) 16 150 ccD 320 dccD
(3,2) 19 180 380
(4,1) 21 200 dk5k6stI
tk5sD
420 k5k6stI
kdk5sD
Heksapentakis pljosnati skraćeni ikosahedron
(5,0) 25 240 500
(3,3) 27 260 tktI 540 kdktI
(4,2) 28
(5,1) 31
(6,0) 36 350 tkt5daD 720 kdkt5daD
(4,3) 37
(5,2) 39
(6,1) 43
(4,4) 48 470 dadkt5daD 960 k5k6akdk5aD
(6,2) 48
(5,3) 49
(5,4) 61
(6,3) 64
(5,5) 75
(6,4) 76
(6,5) 91
(6,6) 108
...

T-brojevi mogu biti predstavljeni na različite načine, na primjer T = 1 mogu biti predstavljeni samo kao ikosaedar , dodekahedron a , ovisno o vrsti kvazi-simetrije, T = 3 mogu biti predstavljeni ili kao skraćeni dodekaedar, ikosidodekahedron ili skraćeni ikosaedar i njihove dvojnosti a Triosni ikosaedar, rombni triakontahedron ili pentakis dodekahedron.[20]

Funkcije

Funkcije viriona su zaštita genoma, isporuka genoma i interakcija sa domaćinom. Virion mora sastaviti stabilnu, zaštitnu proteinsku ljuska za zaštitu genoma od smrtonosnih hemijskih i fizičkih agenasa. To uključuje oblike prirodnog zračenja, ekstreme pH ili temperature i proteolitičkih i nukleolitskih enzima. Isporuka genoma je također važna kod specifičnog vezanja na vanjske receptore u ćelijama domaćina, prijenos specifičnih signala koji izazivaju jednouvijenost genoma i fuziju sa ćelijskom membranom domaćina.[16]

Hemijska svojstva

Virusne čestice mora biti metastabilne, tako da interakcije mogu lahko preokrenuti, prilikom ulaska i neobložene nove ćelije domaćina. Ako se postiže minimalno slobodno energetsko stanje, konformacija će biti nepovratna, povezana kopčom i ulazom. Svaka podjedinica kapside ima identične kontaktne veze sa svojim susjedima, a dvije veze su obično nekovalentne. Nekovalentne veze drže strukturne jedinice zajedno. Reverzibilno formiranje nekovalentnih veza između pravilno savijenih podjedinica dovodi do grešaka montaže i smanjuje slobodnu energiju.[16]

Također pogledajte

Reference

Šablon:Refspisak

Vanjski linkovi

Šablon:Commonscat

Šablon:Virusne teme

  1. Šablon:Cite book
  2. Šablon:Cite book
  3. Šablon:Cite journal
  4. Šablon:Cite journal
  5. Šablon:Cite journal
  6. Šablon:Cite book
  7. Šablon:Cite web
  8. Šablon:Cite book
  9. Šablon:Cite journal
  10. Khayat et al. classified Sulfolobus turreted icosahedral virus (STIV) and Laurinmäki et al. classified bacteriophage Bam35 – Proc. Natl. Acad. Sci. U.S.A. 103, 3669 (2006); 102, 18944 (2005); Structure 13, 1819 (2005)
  11. Caspar DLD, Klug A (1962) Q. Biol. 27, 1–24.
  12. 12,0 12,1 Šablon:Cite book
  13. Šablon:Cite book
  14. 14,0 14,1 Šablon:Cite journal
  15. 15,0 15,1 Šablon:Cite journal
  16. 16,0 16,1 16,2 Šablon:Cite book
  17. Šablon:Cite journal
  18. Šablon:Cite journal
  19. Šablon:Cite web
  20. Šablon:Cite journal